Nanocomposite Scintillators for Gamma-ray Astronomy

Completed Technology Project (2014 - 2015)

Project Introduction

With the *Fermi* mission well into its extended phase, the time is right to plan for the next generation gamma-ray project. No matter what form this mission might take, it will use scintillation-based materials as either primary or anticoincidence detectors. This project will develop and characterize nanocomposite scintillators for space-based applications, specifically tuned to medium energy (1 MeV - 100 MeV) gamma-ray astrophysics. Nanocomposites are not only easier to manufacture and are thus cheaper than traditional scintillators while still providing similar or better performance, but they can be tuned to a specific application.

We propose to develop and characterize nanocomposite scintillators for space-based applications, specifically tuned to medium energy (ME; 1 MeV - 100 MeV) gamma-ray astrophysics. At the end of the funded phase of this project we plan to have a working understanding of the manufacture and performance of several different types of nanocomposite materials. The end goal is not to have a working prototype of a detector but to be in a position where we can produce a detector tuned to a specific application based on future funding sources.

Anticipated Benefits

Every major gamma-ray mission (ME or HE) has included some type of scintillator-based detector, because γ -ray telescopes are essentially particle detectors.

Nanocomposite scintillators could also be used as radiation monitors on Earth.

Primary U.S. Work Locations and Key Partners

Sample Scintillator with Wavelength Shifting Fibers

Table of Contents

Project Introduction	1
Anticipated Benefits	1
Primary U.S. Work Locations	
and Key Partners	1
Images	2
Project Website:	2
Organizational Responsibility	2
Project Management	2
Technology Maturity (TRL)	3
Technology Areas	3

Center Independent Research & Development: GSFC IRAD

Nanocomposite Scintillators for Gamma-ray Astronomy

Completed Technology Project (2014 - 2015)

Organizations Performing Work	Role	Туре	Location
☆Goddard Space Flight Center(GSFC)	Lead	NASA	Greenbelt,
	Organization	Center	Maryland

Primary U.S. Work Locations

Maryland

Images

Sample Scintillator with Wavelength Shifting Fibers Sample Scintillator with Wavelength Shifting Fibers (https://techport.nasa.gov/imag e/4197)

Project Website:

http://sciences.gsfc.nasa.gov/sed/

Organizational Responsibility

Responsible Mission Directorate:

Mission Support Directorate (MSD)

Lead Center / Facility:

Goddard Space Flight Center (GSFC)

Responsible Program:

Center Independent Research & Development: GSFC IRAD

Project Management

Program Manager:

Peter M Hughes

Project Manager:

Stanley D Hunter

Principal Investigator:

Jeremy S Perkins

Co-Investigators:

David J Thompson Elizabeth A Hays George Manos Alexander A Moiseev Julie E Mcenery

Center Independent Research & Development: GSFC IRAD

Nanocomposite Scintillators for Gamma-ray Astronomy

Completed Technology Project (2014 - 2015)

Technology Areas

Primary:

- TX11 Software, Modeling, Simulation, and Information Processing
 - ☐ TX11.5 Mission
 Architecture, Systems
 Analysis and Concept
 Development

